
Moses statistical machine translation system 
 

Moses is a statistical machine translation system that allows you to automatically train 

translation models for any language pair. All you need is a collection of translated texts (parallel 

corpus). Once you have a trained model, an efficient search algorithm quickly finds the highest 

probability translation among the exponential number of choices. 

 
Features 

 Moses offers two types of translation models: phrase-based and tree-based 

 Moses features factored translation models, which enable the integration linguistic and 
other information at the word level 

 Moses allows the decoding of confusion networks and word lattices, enabling easy 

integration with ambiguous upstream tools, such as automatic speech recognizers or 

morphological analyzers 

 The Experiment Management System makes using Moses much easier. 
 

The released software includes a command line executable which can used for decoding. 

The source code for the decoder, can be downloaded from github. Download the latest release [1] 

or the current snapshot from github. 

The development of Moses is mainly supported by the European Union under the following 

projects: 

 EuroMatrix and TC-STAR (Framework 6) 

 EuroMatrixPlus, LetsMT, META-NET, MosesCore and MateCat (Framework 7) 

It has received additional support from 

 University of Edinburgh, Scotland 

 Charles University, Prague, Czech Republic 

 Fondazione Bruno Kessler, Trento, Italy 

 RWTH Aachen, Germany 

 University of Maryland, College Park, United States 

 Massachusetts Institute of Technology, United States 

 US funding agencies DARPA, NSF, and Department of Defence 
 

Moses is licensed under the LGPL. [2] 

 

The minimum software requirements are: 

 Moses (obviously!) 

 GIZA++, for word-aligning your parallel corpus 

 IRSTLM, SRILM, OR KenLM for language model estimation. 
KenLM is included in Moses and the default in the Moses tool-chain. IRSTLM and KenLM 

are LGPL licensed (like Moses) and therefore available for commercial use. [3] 

 
GIZA++: Training of statistical translation models. GIZA++ is an extension of the program 

GIZA (part of the SMT toolkit EGYPT) which was developed by the Statistical Machine 

Translation team during the summer workshop in 1999 at the Center for Language and Speech 

Processing at Johns-Hopkins University (CLSP/JHU). GIZA++ includes a lot of additional 

features. The extensions of GIZA++ were designed and written by Franz Josef Och. [4] 
IRSTLM. The IRST Language Modeling (IRSTLM) Toolkit features algorithms and data 

structures suitable to estimate, store, and access very large n-gram language models. This software 

has been integrated into a popular open source Statistical Machine Translation decoder called 

Moses, and is compatible with language models created with other tools, such as the SRILM 

Tooolkit. [5] 



SRILM. The SRI Language Modeling (SRILM) toolkit offers tools for building and applying 

statistical language models for use in speech recognition, statistical tagging and segmentation, and 

machine translation. The SRILM toolkit is used in the Moses SMT system for Language modeling 

support. [6] 
KenLM estimates unpruned language models with modified Kneser-Ney smoothing. The 

builder is disk-based: you specify the amount of RAM to use and it performs disk-based merge 

sort when necessary. It's faster than SRILM and IRSTLM and scales to much larger models. [7]  

 
Corpus Preparation 

To train a translation system we need parallel data (text translated into two different 

languages) which is aligned at the sentence level. 

To prepare the data for training the translation system, we have to perform the following 

steps: 

 tokenisation: This means that spaces have to be inserted between (e.g.) words and 

punctuation. 

 truecasing: The initial words in each sentence are converted to their most probable casing. 
This helps reduce data sparsity. 

 cleaning: Long sentences and empty sentences are removed as they can cause problems 

with the training pipeline, and obviously mis-aligned sentences are removed. 

 
Language Model Training 

The language model (LM) is used to ensure fluent output, so it is built with the target 

language. 

For faster loading need binarise the input file using KenLM. Note that can also use IRSTLM 

which also has a binary format that Moses supports. 

 
Training the Translation System 

To do training the translation model, need run word-alignment (using GIZA++), phrase 

extraction and scoring, create lexicalised reordering tables and create your Moses configuration 

file, all with a single command. 

If you have a multi-core machine it's worth using the -cores argument to encourage as much 

parallelisation as possible. 

This took about 1.5 hours using 2 cores on a powerful laptop (Intel i7-2640M, 8GB RAM, 

SSD). Once it's finished there should be a moses.ini file in the directory ~/working/train/model. 

You can use the model specified by this ini file to decode (i.e. translate), but there's a couple of 

problems with it. The first is that it's very slow to load, but we can fix that by binarising the phrase 

table and reordering table, i.e. compiling them into a format that can be load quickly. The second 

problem is that the weights used by Moses to weight the different models against each other are 

not optimised - if you look at the moses.ini file you'll see that they're set to default values like 0.2, 

0.3 etc. To find better weights we need to tune the translation system, which leads us on to the next 

step... 

 
Tuning 

This is the slowest part of the process. Tuning requires a small amount of parallel data, 

separate from the training data. Launch the tuning process, the end result of tuning is an ini file 

with trained weights, which should be in ~/working/mert- work/moses.ini. 

 
Testing 

Now we can run Moses and get our translation. At this stage, your probably wondering how 

good the translation system is. To measure this, we use another parallel data set (the test set) 

distinct from the ones we've used so far. 



The model that we've trained can then be filtered for this test set, meaning that we only retain 

the entries needed translate the test set. This will make the translation a lot faster. 

You can test the decoder by first translating the test set (takes a wee while) then running the 

BLEU script on it. [2] 

 
The phrase-based decoder in Moses, with using a simple model 

A Simple Translation Model 

Let us begin with a look at the toy phrase-based translation model that is available for 

download at http://www.statmt.org/moses/download/sample-models.tgz. Unpack the tar ball and 

enter the directory sample-models/phrase-model. 

The model consists of two files: 

 phrase-table the phrase translation table, and 

 moses.ini the configuration file for the decoder. 
Let us look at the first line of the phrase translation table (file phrase-table). 

The translation tables are the main knowledge source for the machine translation decoder. 

The decoder consults these tables to figure out how to translate input in one language into output 

in another language. 

Being a phrase translation model, the translation tables do not only contain single word 

entries, but multi-word entries. These are called phrases, but this concept means nothing more than 

an arbitrary sequence of words, with no sophisticated linguistic motivation. 

 
Next - Running the Decoder 

We run the decoder. 

 
Trace 

There are two switches that force the decoder to reveal more about its inner workings: -

report-segmentation and -verbose. 

The trace option reveals which phrase translations were used in the best translation found by 

the decoder. 

 
Verbose 

Now for the next switch, -verbose (short -v), that displays additional run time information. 

The verbosity of the decoder output exists in three levels. The default is 1. Moving on to -v 2 gives 

additional statistics for each translated sentences. 

The stack sizes after each iteration of the stack decoder. An iteration is the processing of all 

hypotheses on one stack: After the first iteration (processing the initial empty hypothesis), 10 

hypothesis that cover one German word are placed on stack 1, and 2 hypotheses that cover two 

foreign words are placed on stack 2. Note how this relates to the 12 translation options. 

During the beam search a large number of hypotheses are generated (453). Many are 

discarded early because they are deemed to be too bad (272), or pruned at some later stage (0), and 

some are recombined (69). The remainder survives on the stacks. 

The most verbose output -v 3 provides even more information. 

Before decoding, the phrase translation table is consulted for possible phrase translations. 

For some phrases, we find entries, for others we find nothing. 

The pair of numbers next to a phrase is the coverage, pC denotes the log of the phrase 

translation probability, after c the future cost estimate for the phrase is given. 

Future cost is an estimate of how hard it is to translate different parts of the sentence. 

 

Tuning for Quality 

The key to good translation performance is having a good phrase translation table. But some 

tuning can be done with the decoder. The most important is the tuning of the model parameters. 



The probability cost that is assigned to a translation is a product of probability costs of four 

models: 

 phrase translation table, 

 language model, 

 reordering model, and 

 word penalty. 
Each of these models contributes information over one aspect of the characteristics of a good 

translation: 

 The phrase translation table ensures that the English phrases and the German phrases are 

good translations of each other. 

 The language model ensures that the output is fluent English. 

 The distortion model allows for reordering of the input sentence, but at a cost: The more 

reordering, the more expensive is the translation. 

 The word penalty ensures that the translations do not get too long or too short. 
Each of the components can be given a weight that sets its importance. Mathematically, the 

cost of translation is: 

p(e|f) = phi(f|e)^weight_phi * LM(e)^weight_lm * D(e,f)^weight_d * W(e)^weight_w 

The probability p(e|f) of the English translation e given the foreign input f is broken up into 

four models, phrase translation phi(f|e), language model LM(e), distortion model D(e,f), and word 

penalty W(e) = exp(length(e)). Each of the four models is weighted by a weight. 

The weighting is provided to the decoder with the four parameters weight-t, weight-l, weight-

d, and weight-w. The default setting for these weights is 1, 1, 1, and 0. These are also the values in 

the configuration file moses.ini. 

Setting these weights to the right values can improve translation quality. 

What is the right weight setting depends on the corpus and the language pair. Ususally, a 

held out development set is used to optimize the parameter settings. The simplest method here is 

to try out with a large number of possible settings, and pick what works best. Good values for the 

weights for phrase translation table (weight-t, short tm), language model (weight-l, short lm), and 

reordering model (weight-d, short d) are 0.1-1, good values for the word penalty (weight-w, short 

w) are -3-3. Negative values for the word penalty favor longer output, positive values favor shorter 

output. 

 

Tuning for Speed 

Let look at some additional parameters that help to speed up the decoder. Unfortunately 

higher speed usually comes at cost of translation quality. The speed-ups are achieved by limiting 

the search space of the decoder. By cutting out part of the search space, we may not be able to find 

the best translation anymore. 

 
Translation Table Size 

One strategy to limit the search space is by reducing the number of translation options used 

for each input phrase, i.e. the number of phrase translation table entries that are retrieved. While 

in the toy example, the translation tables are very small, these can have thousands of entries per 

phrase in a realistic scenario. If the phrase translation table is learned from real data, it contains a 

lot of noise. So, we are really interested only in the most probable ones and would like to elimiate 

the others. 

The are two ways to limit the translation table size: by a fixed limit on how many translation 

options are retrieved for each input phrase, and by a probability threshold, that specifies that the 

phrase translation probability has to be above some value. 

 
Hypothesis Stack Size (Beam) 

A different way to reduce the search is to reduce the size of hypothesis stacks. For each 

number of foreign words translated, the decoder keeps a stack of the best (partial) translations. By 



reducing this stack size the search will be quicker, since less hypotheses are kept at each stage, 

and therefore less hypotheses are generated. 

From a user perspective, search speed is linear to the maximum stack size. 

Note that the number of hypothesis entered on stacks is getting smaller with the stack size. 

As we have previously described with translation table pruning, we may also want to use the 

relative scores of hypothesis for pruning instead of a fixed limit. The two strategies are also called 

histogram pruning and threshold pruning. 

With small stack sizes or small thresholds we risk search errors, meaning the generation of 

translations that score worse than the best translation according to the model. 

 
Limit on Distortion (Reordering) 

The basic reordering model implemented in the decoder is fairly weak. Reordering cost is 

measured by the number of words skipped when foreign phrases are picked out of order. 

Total reordering cost is computed by D(e,f) = - Σi (d_i) where d for each phrase i is defined 

as d = abs( last word position of previously translated phrase + 1 - first word position of newly 

translated phrase ). 

This is illustrated by the following graph: 

 
 

This reordering model is suitable for local reorderings: they are discouraged, but may occur 

with sufficient support from the language model. But large-scale reorderings are often arbitrary 

and effect translation performance negatively. 

By limiting reordering, we can not only speed up the decoder, often translation performance 

is increased. Reordering can be limited to a maximum number of words skipped (maximum d) 

with the switch -distortion-limit, or short -dl. 

Setting this parameter to 0 means monotone translation (no reordering). If you want to allow 

unlimited reordering, use the value -1. [8] 

 

 

Moses supports models that have become known as hierarchical phrase-based models and 

syntax-based models. These models use a grammar consisting of SCFG (Synchronous Context-

Free Grammar) rules. In the following, we refer to these models as tree-based models. 

 

Tree-Based Models 

Traditional phrase-based models have as atomic translation step the mapping of an input 

phrase to an output phrase. Tree-based models operate on so-called grammar rules, which include 

variables in the mapping rules. 

The variables in these grammar rules are called non-terminals, since their occurrence 

indicates that the process has not yet terminated to produce the final words (the terminals). Besides 

a generic non-terminal X, linguistically motivated non-terminals such as NP (noun phrase) or VP 

(verb phrase) may be used as well in a grammar (or translation rule set). 

 

We call these models tree-based, because during the translation a data structure is created 

that is a called a tree. 



When applying these rules in the given order, we produce the translation The door opens 

quickly in the following fashion: 

 
 

First the simple phrase mappings (1) Das Tor to The door and (2) schnell to quickly are 

carried out. This allows for the application of the more complex rule (3) geht X1 auf to opens X1. 

Note that at this point, the non-terminal X, which covers the input span over schnell is replaced by 

a known translation quickly. Finally, the glue rule (4) X1 X2 to X1 X2 combines the two fragments 

into a complete sentence. 

Formally, such context-free grammars are more constraint than the formalism for phrase-

based models. In practice, however, phrase-based models use a reordering limit, which leads to 

linear decoding time. For tree-based models, decoding is not linear with respect to sentence length, 

unless reordering limits are used. 

Current research in tree-based models has the expectation to build translation models that 

more closely model the underlying linguistic structure of language, and its essential element: 

recursion. This is an active field of research. 

 
Chart Decoding 

Phrase-Based decoding generates a sentence from left to right, by adding phrases to the end 

of a partial translation. Tree-based decoding builds a chart, which consists of partial translation for 

all possible spans over the input sentence. 

Currently Moses implements a CKY+ algorithm for arbitrary number of non-terminals per 

rule and an arbitrary number of types of non-terminals in the grammar. 

 

Decoder Parameters 

The most important consideration in decoding is a speed/quality trade-off. If you want to 

win competitions, you want the best quality possible, even if it takes a week to translate 2000 

sentences. If you want to provide an online service, you know that users get impatient, when they 

have to wait more than a second. 
 

Beam Settings 

The chart decoder has an implementation of CKY decoding using cube pruning. The latter 

means that only a fixed number of hypotheses are generated for each span. This number can be 

changed with the option cube-pruning-pop-limit (or short cbp). The default is 1000, higher 

numbers slow down the decoder, but may result in better quality. 

Another setting that directly affects speed is the number of rules that are considered for each 

input left hand side. It can be set with ttable-limit. 

 
Limiting Reordering 

The number of spans that are filled during chart decoding is quadratic with respect to 

sentence length. But it gets worse. The number of spans that are combined into a span grows linear 

with sentence length for binary rules, quadratic for trinary rules, and so on. In short, long sentences 

become a problem. A drastic solution is the size of internal spans to a maximum number. 

This sounds a bit extreme, but does make some sense for non-syntactic models. Reordering 

is limited in phrase-based models, and non-syntactic tree-based models (better known as 



hierarchical phrase-based models) and should limit reordering for the same reason: they are just 

not very good at long-distance reordering anyway. 

The limit on span sizes can be set with max-chart-span. In fact its default is 10, which is not 

a useful setting for syntax models. 

 
Handling Unknown Words 

In a target-syntax model, unknown words that just copied verbatim into the output need to 

get a non-terminal label. In practice unknown words tend to be open class words, most likely 

names, nouns, or numbers. With the option unknown-lhs you can specify a file that contains pairs 

of non-terminal labels and their probability per line. 

Optionally, we can also model the choice of non-terminal for unknown words through sparse 

features, and optimize their cost through MIRA or PRO. This is implemented by relaxing the label 

matching constraint during decoding to allow soft matches, and allowing unknown words to 

expand to any non-terminal. 

 
Technical Settings 

The parameter non-terminals is used to specify privileged non-terminals. These are used for 

unknown words (unless there is a unknown word label file) and to define the non-terminal label 

on the input side, when this is not specified. 

Typically, we want to consider all possible rules that apply. However, with a large maximum 

phrase length, too many rule tables and no rule table limit, this may explode. The number of rules 

considered can be limited with rule-limit. Default is 5000. 

 

Training Parameters 

There are a number of additional decisions about the type of rules you may want to include 

in your model. This is typically a size / quality trade-off: Allowing more rule types increases the 

size of the rule table, but lead to better results. Bigger rule tables have a negative impact on memory 

use and speed of the decoder. 

There are two parts to create a rule table: the extraction of rules and the scoring of rules. The 

first can be modified with the parameter --extract-options="..." of train-model.perl. The second 

with --score-options="...". 

Here are the extract options: 

 --OnlyDirect: Only creates a model with direct conditional probabilities p(f|e) instead of 

the default direct and indirect (p(f|e) and p(e|f)). 

 --MaxSpan SIZE: maximum span size of the rule. Default is 15. 

 --MaxSymbolsSource SIZE and --MaxSymbolsTarget SIZE: While a rule may be 

extracted from a large span, much of it may be knocked out by sub-phrases that are 

substituted by non-terminals. So, fewer actual symbols (non-terminals and words remain). 

The default maximum number of symbols is 5 for the source side, and practically unlimited 

(999) for the target side. 

 --MinWords SIZE: minimum number of words in a rule. Default is 1, meaning that each 

rule has to have at least one word in it. If you want to allow non-lexical rules set this to 

zero. You will not want to do this for hierarchical models. 

 --AllowOnlyUnalignedWords: This is related to the above. A rule may have words in it, 

but these may be unaligned words that are not connected. By default, at least one aligned 

word is required. Using this option, this requirement is dropped. 

 --MaxNonTerm SIZE: the number of non-terminals on the right hand side of the rule. This 

has an effect on the arity of rules, in terms of non-terminals. Default is to generate only 

binary rules, so the setting is 2. 

 --MinHoleSource SIZE and --MinHoleTarget SIZE: When sub-phrases are replaced by 

non-terminals, we may require a minimum size for these sub-phrases. The default is 2 on 

the source side and 1 (no limit) on the target side. 



 --DisallowNonTermConsecTarget and --NonTermConsecSource. We may want to restrict 

if there can be neighboring non-terminals in rules. In hierarchical models there is a bad 

effect on decoding to allow neighboring non-terminals on the source side. The default is to 

disallow this -- it is allowed on the target side. These switches override the defaults. 

 --NoFractionalCounting: For any given source span, any number of rules can be generated. 

By default, fractional counts are assigned, so probability of these rules adds up to one. This 

option leads to the count of one for each rule. 

 --NoNonTermFirstWord: Disallows that a rule starts with a non-terminal. 

Once rules are collected, the file of rules and their counts have to be converted into a 

probabilistic model. This is called rule scoring, and there are also some additional options: 

 --OnlyDirect: only estimates direct conditional probabilities. Note that this option needs to 

be specified for both rule extraction and rule scoring. 

 --NoLex: only includes rule-level conditional probabilities, not lexical scores. 

 --GoodTuring: Uses Good Turing discounting to reduce actual accounts. This is a good 

thing, use it. 

 
Training Syntax Models 

Training hierarchical phrase models, i.e., tree-based models without syntactic annotation, is 

pretty straight-forward. Adding syntactic labels to rules, either on the source side or the target side, 

is not much more complex. The main hurdle is to get the annotation. This requires a syntactic 

parser. 

Syntactic annotation is provided by annotating all the training data (input or output side, or 

both) with syntactic labels. The format that is used for this uses XML markup. 

After annotating the training data with syntactic information, you can simply run train-

model.perl as before, except that the switches --source-syntax or --target-syntax (or both) have to 

be set. 

 
Annotation Wrappers 

To obtain the syntactic annotation, you will likely use a third-party parser, which has its own 

idiosyncratic input and output format. You will need to write a wrapper script that converts it into 

the Moses format for syntax trees. 

Here provide wrappers (in scripts/training/wrapper) for the following parsers. 

 Bitpar is available from the web site of the University of Munich. The wrapper is 

parse-de-bitpar.perl 

 Collins parser is availble from MIT. The wrapper is parse-en-collins.perl 
 
Relaxing Parses 

The use of syntactic annotation puts severe constraints on the number of rules that can be 

extracted, since each non-terminal has to correspond to an actual non-terminal in the syntax tree. 

Recent research has proposed a number of relaxations of this constraint. The program relax-

parse (in training/phrase-extract) implements two kinds of parse relaxations: binarization and a 

method proposed under the label of syntax-augmented machine translation (SAMT) by Zollmann 

and Venugopal. 

Readers familiar with the concept of binarizing grammars in parsing, be warned: We are 

talking here about modifying parse trees, which changes the power of the extracted grammar, not 

binarization as a optimization step during decoding. 

The idea is the following: If the training data contains a subtree such as 

 



then it is not possible to extract translation rules for Ariel Sharon without additional syntactic 

context. Recall that each rule has to match a syntactic constituent. 

The idea of relaxing the parse trees is to add additional internal nodes that makes the 

extraction of additional rules possible. For instance left-binarization adds two additional nodes and 

converts the subtree into: 

 
 

The additional node with the label ̂ NP allows for the straight-forward extraction of a 

translation rule (of course, unless the word alignment does not provide a consistent alignment).  

The program relax-parse allows the following tree transformations: 

 --LeftBinarize and --RightBinarize: Adds internal nodes as in the example above. Right-

binarization creates a right-branching tree. 

 --SAMT 1: Combines pairs of neighboring children nodes into tags, such as DET+ADJ. 

Also nodes for everything except the first child (NP\\DET) and everything except the last 

child (NP/NN) are added. 

 --SAMT 2: Combines any pairs of neighboring nodes, not only children nodes, 

e.g., VP+DET. 

 --SAMT 3: not implemented. 

 --SAMT 4: As above, but in addition each previously unlabeled node is labeled as FAIL, 

so no syntactic constraint on grammar constraint remains. 

Note that you can also use both --LeftBinarize and --RightBinarize. Note that in this case, as 

with all the SAMT relaxations, the resulting annotation is not any more a tree, since there is not a 

single set of rule applications that generates the structure (now called a forest). 

 
On-Disk Rule Table 

The rule table may become too big to fit into the RAM of the machine. Instead of loading 

the rules into memory, it is also possible to leave the rule table on disk, and retrieve rules on 

demand. [9] 

 

 

Optimizing Moses 

Multi-threaded Moses 

Moses supports multi-threaded operation, enabling faster decoding on multi-core machines. 

The current limitations of multi-threaded Moses are: 

1. irstlm is not supported, since it uses a non-threadsafe cache 

2. lattice input may not work - this has not been tested 

3. increasing the verbosity of Moses will probably cause multi-threaded Moses to crash 

4. Decoding speed will flatten out after about 16 threads. For more scalable speed with 

many threads, use Moses2 

 

How much memory do I need during decoding? 

The single-most important thing you need to run Moses fast is MEMORY. Lots of 

MEMORY. (For example, the Edinburgh group have servers with 144GB of RAM). The rest of 

this section is just details of how to make the training and decoding run fast. 



Calculate total file size of the binary phrase tables, binary language models and binary 

reordering models. 

For example, The total size of these files is approx. 31GB. Therefore, a translation system 

using these models requires 31GB (+ roughly 500MB) of memory to run fast. 

 

Faster Training 
Parallel training 

When word aligning, using mgiza with multiple threads significantly speed up word 

alignment. 
Parallel Extraction 

Once word alignment is completed, the phrase table is created from the aligned parallel 

corpus. There are 2 main ways to speed up this part of the training process. 

Firstly, the training corpus and alignment can be split and phrase pairs from each part can be 

extracted simultaneously. This can be done by simply using the argument -cores. 

Secondly, the Unix sort command is often executed during training. It is essential to optimize 

this command to make use of the available disk and CPU. 

 

Language Model 

Convert your language model to binary format. This reduces loading time and provides more 

control. 
Loading on-demand 

By default, language models fully load into memory at the beginning. If you are short on 

memory, you can use on-demand language model loading. The language model must be converted 

to binary format in advance and should be placed on LOCAL DISK, preferably SSD. For KenLM, 

you should use the trie data structure, not the probing data structure. 

 

Suffix array 

Suffix arrays store the entire parallel corpora and word alignment information in memory, 

instead of the phrase table. The parallel corpora and alignment file is often much smaller than the 

phrase table. 

Therefore, it is more memory efficient to store the corpus in memory, rather than the entire 

phrase-table. This is usually structured as a suffix array to enable fast extraction of translations. 

Translations are extracted as needed, usually per input test set, or per input sentence. 

Moses support two different implementations of suffix arrays. 

 

Cube Pruning 

Cube pruning limits the number of hypotheses created for each stack (or chart cell in chart 

decoding). It is essential for chart decoding (otherwise decoding will take a VERY long time) and 

an option in phrase-based decoding. 

 

Minimizing memory during training 

TODO: MGIZA with reduced memory sntcoc 

 

Minimizing memory during decoding 

The biggest consumer of memory during decoding are typically the models. Here are some 

links on how to reduce the size of each. 

 Language model 

 Translation model 

 Reordering model. 

 

Phrase-table types 



Moses has multiple phrase table implementations. The one that suits you best depends on 

the model you're using (phrase-based or hierarchical/syntax), and how much memory your server 

has. 

Here is a complete list of the types: 

 Memory - this read in the phrase table into memory. For phrase-based model and chart 

decoding. Note that this is much faster than Binary and OnDisk phrase table format, but 

it uses a lot of RAM. 

 Binary - a phrase table is converted into a 'database'. Only the translations which are 

required are loaded into memory. Therefore, requiring less memory, but potentially 

slower to run. For phrase-based model 

 OnDisk - reimplementation of Binary for chart decoding. 

 SuffixArray - stores the parallel training data and word alignment in memory, instead of 

the phrase table. Extraction is done on the fly. Also have a feature where you can add 

parallel data while the decoder is running ('Dynamic Suffix Array'). For Phrase-based 

models. 

 ALSuffixArray - Suffix array for hierarchical models.  

 FuzzyMatch - Implementation of Koehn and Senellart (2010). 

 Hiero - like SCFG, but translation rules are in standard Hiero-style format 

 Compact - for phrase-based model. [10] 
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